Wednesday, August 26, 2015

Page 158

Problem 53

Problem. Find the derivative of $y=(7 x+3)^{4}$.
Solution. Use the Power Rule and the Chain Rule.

$$
\begin{aligned}
y^{\prime} & =4(7 x+3)^{3} \cdot \frac{d}{d x}(7 x+3) \\
& =4(7 x+3)^{3}(7) \\
& =28(7 x+3)^{3} .
\end{aligned}
$$

Problem 55

Problem. Find the derivative of $y=\frac{1}{x^{2}+4}$.
Solution. Use the special case of the Quotient Rule:

$$
\frac{d}{d x}\left(\frac{1}{f(x)}\right)=-\frac{f^{\prime}(x)}{(f(x))^{2}}
$$

Then

$$
y^{\prime}=-\frac{2 x}{\left(x^{2}+4\right)^{2}}
$$

Problem 57

Problem. Find the derivative of $y=5 \cos (9 x+1)$.
Solution. Use the rule for cosine and the Chain Rule.

$$
\begin{aligned}
y^{\prime} & =-5 \sin (9 x+1) \cdot 9 \\
& =-45 \sin (9 x+1)
\end{aligned}
$$

Problem 59
Problem. Find the derivative of $y=\frac{x}{2}-\frac{\sin 2 x}{4}$.
Solution. Use the rule for sine and the Chain Rule.

$$
\begin{aligned}
y^{\prime} & =\frac{1}{2}-\frac{(\cos 2 x) \cdot 2}{4} \\
& =\frac{1}{2}-\frac{\cos 2 x}{2}
\end{aligned}
$$

Problem 61

Problem. Find the derivative of $y=x(6 x+1)^{5}$.
Solution. Use the Product Rule, the Power Rule, and the Chain Rule.

$$
\begin{aligned}
y^{\prime} & =1 \cdot(6 x+1)^{5}+x \cdot 5(6 x+1)^{4} \cdot 6 \\
& =(6 x+1)^{5}+30 x(6 x+1)^{4} .
\end{aligned}
$$

Problem 63

Problem. Find the derivative of $f(x)=\frac{3 x}{\sqrt{x^{2}+1}}$.
Solution. Use the Quotient Rule, the Power Rule (for the square root), and the Chain Rule.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{3 \cdot \sqrt{x^{2}+1}-3 x \cdot \frac{d}{d x}\left(\sqrt{x^{2}+1}\right)}{x^{2}+1} \\
& =\frac{3 \sqrt{x^{2}+1}-3 x \cdot\left(\frac{x}{\sqrt{x^{2}+1}}\right)}{x^{2}+1} \\
& =\frac{3\left(x^{2}+1\right)-3 x^{2}}{\left(x^{2}+1\right) \sqrt{x^{2}+1}} \\
& =\frac{3}{\left(x^{2}+1\right)^{3 / 2}} .
\end{aligned}
$$

Problem 65

Problem. Find and evaluate the derivative of $f(x)=\sqrt{1-x^{3}}$ at $x=-2$.
Solution. The derivative is

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2} \cdot\left(1-x^{3}\right)^{-1 / 2} \cdot\left(-3 x^{2}\right) \\
& =-\frac{3 x^{2}}{2 \sqrt{1-x^{3}}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
f^{\prime}(-2) & =-\frac{3(-2)^{2}}{2 \sqrt{1-(-2)^{3}}} \\
& =-\frac{12}{6} \\
& =-2 .
\end{aligned}
$$

Problem 67

Problem. Find and evaluate the derivative of $f(x)=\frac{4}{x^{2}+1}$ at $x=-1$.
Solution. The derivative is

$$
\begin{aligned}
f^{\prime}(x) & =-\frac{4 \cdot 2 x}{\left(x^{2}+1\right)^{2}} \\
& =-\frac{8 x}{\left(x^{2}+1\right)^{2}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
f^{\prime}(-1) & =-\frac{8(-1)}{\left((-1)^{2}+1\right)^{2}} \\
& =\frac{8}{4} \\
& =2 .
\end{aligned}
$$

Problem 69

Problem. Find and evaluate the derivative of $f(x)=\frac{1}{2} \csc 2 x$ at $x=\frac{\pi}{4}$.
Solution. The derivative is

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2} \cdot(-\cot 2 x \csc 2 x) \cdot 2 \\
& =-\cot 2 x \csc 2 x
\end{aligned}
$$

Then

$$
\begin{aligned}
f^{\prime}\left(\frac{\pi}{4}\right) & =-\cot \frac{\pi}{2} \csc \frac{\pi}{2} \\
& =-(0)(1) \\
& =0 .
\end{aligned}
$$

Problem 86

Problem. All edges of a cube are expanding at a rate of 8 centimeters per second. How fast is the surface area changing when each edge is 6.5 centimeters?

Solution. Let x be the side of the cube and let s be the surface area. Then $s=6 x^{2}$. Now, s and x are both functions of time t, so differentiate with respect to t to get

$$
\frac{d s}{d t}=12 x \cdot \frac{d x}{d t} .
$$

We are asked to find the rate of change of the surface area, that is, $\frac{d s}{d t}$ when $x=6.5$, given that the rate of change of x, that is, $\frac{d x}{d t}$, is 8 . Thus, we substitute $x=6.5$ and $\frac{d x}{d t}=8$ into the equation to get

$$
\frac{d s}{d t}=12 \cdot 6.5 \cdot 8=624
$$

Problem 87

Problem. A rotating beacon is located 1 ilometer off a straight shoreline. The bacon rotates at a rate of 3 revolutions per minute. How fast does the beam of light appear to be moving to a viewer whoe is $\frac{1}{2}$ kilometer down the shoreline?
Solution. Let x be the distance along the shoreline and let θ be the angle (as shown in the diagram). First, we need an equation (that is, a function) relating x and θ. Using the right triangle with sides 1 and x, we see that

$$
\tan \theta=x .
$$

Now we can differentiate with respect to time and get

$$
\sec ^{2} \theta \cdot \frac{d \theta}{d t}=\frac{d x}{d t}
$$

We are asked to find $\frac{d x}{d t}$. The value of $\frac{d \theta}{d t}$ is given as 3 revolutions per minute, which equals 6π radians per minute. So, $\frac{d \theta}{d t}=6 \pi$. That leaves $\sec \theta$. From the right triangle, we see that

$$
\sec \theta=\sqrt{x^{2}+1}
$$

Therefore, when $x=\frac{1}{2}$, we have $\sec \theta=\sqrt{\frac{5}{4}}$. Substituting these values, we get

$$
\begin{aligned}
\left(\sqrt{\frac{5}{4}}\right)^{2} \cdot 6 \pi & =\frac{d x}{d t} \\
\frac{d x}{d t} & =\frac{15 \pi}{4}
\end{aligned}
$$

Problem 88

Problem. A sandbag is dropped from a balloon at a height of 60 meters when the angle of elevation to the sun is 30°. The position of the sandbag is

$$
s(t)=60-4.9 t^{2}
$$

Find the rate at which the shadow of the sandbag is traveling along the ground when the sandbag is at a height of 34 meters.
Solution. Let x be the distance to the shadow of the sandbag (the base of the triangle). We need an equation relating x and $s(t)$. The sides of the right triangle are x and $s(t)$ and the angle is 30° (constant). Therefore,

$$
\frac{s(t)}{x}=\tan 30^{\circ}=\frac{1}{\sqrt{3}},
$$

so

$$
x=s(t) \sqrt{3} .
$$

Differentiate to get

$$
\begin{aligned}
\frac{d x}{d t} & =s^{\prime}(t) \sqrt{3} \\
& =(-9.8 t) \sqrt{3}
\end{aligned}
$$

The sandbag will be 35 meters above the ground when $60-4.9 t^{2}=35$. Solve that equation to get $t=\frac{5}{\sqrt{4.9}}=2.259$. Thus,

$$
\begin{aligned}
\frac{d x}{d t} & =(-9.8)(2.259) \sqrt{3} \\
& =-38.34
\end{aligned}
$$

Page 251

Problem 15

Problem. Find the indefinite integral $\int\left(x^{3 / 2}+2 x+1\right) d x$.
Solution. Use the Power Rule for integration.

$$
\int\left(x^{3 / 2}+2 x+1\right) d x=\frac{2}{5} x^{5 / 2}+x^{2}+x+C .
$$

Problem 25

Problem. Find the indefinite integral $\int(5 \cos x+4 \sin x) d x$.
Solution. Use the rules for $\sin x$ and $\cos x$.

$$
\begin{aligned}
\int(5 \cos x+4 \sin x) d x & =5(\sin x)+4(-\cos x)+C \\
& =5 \sin x-4 \cos x+C
\end{aligned}
$$

Problem 53

Problem. A ball is thrown vertically upward from a height of 6 feet with an initial velocity of 60 feet per second. How high will the ball go?

Solution. Let $x(t)$ be the height of the ball at time t. The gravitational acceleration is $a(t)=-32$, so $x^{\prime \prime}(t)=-32$. Then integrate to get

$$
x^{\prime}(t)=-32 t+v_{0} .
$$

At time $t=0$, the velocity is 60 , so $v_{0}=60$ and we have $x^{\prime}(t)=-32 t+60$. The ball will reach its highest point when its velocity is 0 , so solve $x^{\prime}(t)=0$ to get $t=\frac{15}{8}$. Now integrate again to get

$$
x(t)=-16 t^{2}+60 t+x_{0} .
$$

The height at time $t=0$ is 6 , so $x_{0}=6$ and we have $x(t)=-16 t^{2}+60 t+6$. Now let $t=\frac{15}{8}$ to find the height when the velocity is 0 .

$$
\begin{aligned}
x\left(\frac{15}{8}\right) & =-16\left(\frac{15}{8}\right)^{2}+60\left(\frac{15}{8}\right)+6 \\
& =\frac{249}{4} \\
& =62.25 .
\end{aligned}
$$

